

WHEYVOLUTION WHEYVOLUTION WHEYVOLUTION

New Processes for New Products

Impact of protein modification – designed functionalities as food ingredients

E. Allen Foegeding Department of Food, Bioprocessing and Nutrition Sciences North Carolina State University USA

WHEYVOLUTION WHEYVOLUTION WHEYVOLUTION

Molecular Function

*Foams and Emulsions

Network formation *Gels and films

Soluble particles (heat stability)

*Beverages

Modifications

WHEYVOLUTION WHEYVOLUTION WHEYVOLUTION WHEYVOLUTION

- Soluble aggregates
 Denaturation and aggregation
- ~ Hydrolysis
- ~ Deamidation
- ~ Glycosylation
- ~ Add other polymers

Angel Food Cake

WHEYVOLUTION WHEYVOLUTION WHEYVOLUTION

- Form Foam (200 ml) à 10% protein à 12% Sugar
- Blend in:
 à 33 g cake flour
 à 75.8 g powdered sugar
- ~ Bake

Stability of the wet foam

Time (min)

Problem in cake structure

WHEYVOLUTION WHEYVOLUTION WHEYVOLUTION WHEYVOLUTION

Loss of bubble stability during baking

100% Egg White

75% Egg White & 25% WPI

Properties of Foams

WHEYVOLUTION WHEYVOLUTION WHEYVOLUTION WHEYVOLUTION

~

FORMATION

 Foamability – Effectiveness of gas encapsulation (Wilde and Clark, 1996)

- PHYSICAL PROPERTIES
 - Air phase volume (overrun) and bubble size
 - Rheological Shear moduli and yield stress
- STABILITY
 - è Drainage
 - è Coalescence
 - è Disproportionation

What happened during baking?

WHEYVOLUTION WHEYVOLUTION WHEYVOLUTION

WPI batters destabilize during the entire process

Egg white batters remain stable during the entire process

Lesson: Functionality is the entire process!

Whey proteins in Beverages

WHEYVOLUTION WHEYVOLUTION WHEYVOLUTION

Stability

*No visible phase separation

Flavor *No off-flavors *Low astringency

Clarity *Clear like soft drinks

Nutrition & Health *No changes in biological properties

General Approach

WHEYVOLUTION WHEYVOLUTION WHEYVOLUTION WHEYVOLUTION

~ Inhibit denaturation or alter aggregation

 Addition of charged polysaccharides (dextran sulfate)

 \geqq Addition of β - or α_s -casein to act as "molecular chaperones"

WHEYVOLUTION wheyvolution Dextran Sulfate (DS)

pH 5.8

pH 6.0

pH 5.6

•6% β-Lactoglobulin

•Heated at 85°C for 15 min

* = Gel

pH 6.2

$A\dot{a}G = increasing DS concentration$

Vardhanabhuti, B. and Foegeding, Unpublished data

Caseins as Molecular Chaperones: Previous investigations

TOO

LOW!

WHEYVOLUTION WHEYVOLUTION WHEYVOLUTION

5th International Whey Conference

Study	рН	Temp. (°C)	Time (min)	Whey components (%)	Caseins (%)	Total protein (%)
*1	7.0	70	5	a-lac (0.2) b-lac (0.2)	a _s -casein (0.6)	1.0
*2	7.1	70	480	b-lac (0.5)	a _s -casein (0.5)	1.0
*3	6.0	85	10	Whey protein isolate (0.5)	a _{s1} /b-casein (0.5)	1.0
		1		1 M		

*1 Bhattacharyya and Das, J. Biol. Chem. (1999), vol. 274, p. 15505

*2 Morgan et al., J. Agric. and Food Chem. (2005), vol. 53, p. 2670

*3 O'Kennedy and Mounsey, J. Agric. and Food Chem. (2006), vol. 54, p. 5639

b-Lactoglobulin & b-casein (BCN)

5th International Whey Conference

- Unheated solutions (25°C) were clear
- BCN decreased the turbidity of heated solutions, especially 2% BCN (total protein 8%)
 - Heating at 90°C produced clearer solutions than at 75°C

Constant 6% (w/v) BLG

Yong et al, unpublished data

Effect of different caseins

Maximum linear region

- Two lots of BCN produced identical turbidity profiles
- A crude BCN showed a systematic shift up
- a_s-Casein inhibited turbidity development at 70°C matched with other studies
- However, turbidity increased drastically at 75°C (lost chaperone ability) and formed gel at 90°C

Constant 6% (w/v) BLG

Yong et al, unpublished data

Molar Mass (SEC-MALS)

Yong et al, unpublished data

Root Mean Square Radius

WHEYVOLUTION WHEYVOLUTION WHEYVOLUTION WHEYVOLUTION

- β -Casein and as-casein showed chaperone effects by altering aggregation of β -lactoglobulin at pH 6 (8% w/v total protein)
- β-Casein was shown to be an effective approach to alter aggregation of β-lactoglobulin over a range of temperatures (70-90°C)
- ~ α_s-casein lost its chaperone ability at temperatures ≥ 75°C

WHEYVOLUTION WHEYVOLUTION

*Dairy Management Inc. and the Southeast Dairy Foods Research Center for funding

*DAVI SCO Foods International for donating the proteins

Protein Synthesis Units

Thanks to:

WHEYVOLUTION WHEYVOLUTION WHEYVOLUTION

Questions?

From: <a>www.whereamiwearing.com/rogue/food/

